
Holistic Program Quality and 
Technical Debt
by Nathan Strutz
for CF.Objective() 2011



Are you bored yet?



My day job...

Photo © Boeing 



Hackers, we have a problem

The "Software Crisis" from the early days of computing, now 
40+ years in

Software projects are over budget, late, inefficient, don't 
meet requirements, code is unmaintainable and resulting 
software is just plain bad

Sometimes, never delivered



Measuring software

Speed & load times

Lines of code

Number of files, by type

Size on disk

Customer requirements

Code Coverage

Cyclomatic Complexity



Programming is hard

"Software is not governed by Moore's Law; more like 
Murphy's Law."

Douglas Crockford

"Every time I think I am making progress, I come to realize 
that I only have more confusion over the 'right' way to 
implement something."

Ben Nadel

"OO Almost Destroyed My Business!"
Marc Funaro



What is quality?

There's no real, single, conclusive definition

It's like chasing wind

It's like herding cats

It's like trying to slam a revolving door

It's like being the best at make-believe

Hmmmmm, the best at make-believe?



... the best at make believe

Image © Adobe?



What is quality?

How do you measure quality? How do you define it?

Completeness, Conciseness, Consistency, Debugability, 
Efficiency, Extensibility, Maintainability, Portability, 
Reliability, Security, Structuredness, Testability, 
Understandability and Usability to name a few

Quality has to cover the entire system, end to end



You need to travel all paths at once



This is your job, this is your life

You aren't paid to take up space and write poor software

Doing it right will pay your salary

Doing it right will be good for your team

Your code is the representation of yourself to your team
If you are virtual, your code is your physical self

Doing it right will pay yourself back



So, What is Quality?



Completeness

Does it do everything it needs to do?



Conciseness

Does it do only what it needs to?



Consistency

Is it predictable in UI and in API?



Debugability

Is it easy to fix complicated things?



Efficiency

Does it feel like it's quick enough?



Extensibility

Is it architected well enough to grow?



Maintainability

Is it easy to find and fix things?



Portability

Is it easy to switch client software?
Is it easy to move servers?



Reliability

Is it available?



Security

Really good security programming 
is really good programming



Security Detour

photo by Alex C. Balla, flickr.com/bluepoint951



Security detour

Mediocre security is the same as insecurity!

Security == Simplicity

Bugs cause security problems. 
Complexity causes bugs. 
Simplicity removes bugs.

But software is still complex



Security detour,
owasp.org ten for 2010
http://www.owasp.org/index.php/Category:OWASP_Top_Ten_Project

Injection
Cross-Site Scripting (XSS)
Broken Authentication and Session Management
Insecure Direct Object References
Cross-Site Request Forgery (CSRF)
Security Misconfiguration
Insecure Cryptographic Storage
Failure to Restrict URL Access
Insufficient Transport Layer Protection
Unvalidated Redirects and Forwards



Structuredness

Is it organized in an obvious way?



Testability

Is it easy to add tests to?



Understandability

Do you know what the system does? 
Do you know how it does it?



Usability

Does it feel good?

Photo by Doc Searls, flickr.com/docsearls



I'd like to talk to you about your debt

Photo by Wally Gobetz, flickr.com/wallyg



Ward Cunningham said it best

Because he said it first
(1992)

Photo by Alex Hung, flickr.com/alexhung



Time == Money

your time is an investment
your knowledge is an investment

your work is an investment



What Classifies as Technical Debt?

Not enough time for planning Poor planning, or no planning

Intentional Unintentional

Make something static when 
it should be dynamic

Leave features unfinished

Legacy code that no one 
wants to maintain

Discover later how application 
should have worked

Keep adding features, never 
refactor

Legacy code that no one can 
maintain



Everybody borrows a little

No one knows the end product from the first few lines
 

"...while you're programming, you are learning. It's often the 
case that it can take a year of programming on a project 
before you understand what the best design approach 
should have been." Martin Fowler 

 
If those wrong turns aren't cleaned up, you have created some 
technical debt



Interest Payments

Interest is paid every time you work in a system that has 
technical debt

It's the time it takes to work around the string and duct tape

Interest is charged on the top

The amount of debt determines how bad your interest 
payments are

In a bad system, you may be paying over 50% to interest



When do you have a problem?
On the surface 

Growing dislike for the system admitted by the developers

Small bugs that never seem to get fixed

A bad UI is a clue to a rotten core

Don't meet requirements like UI guidelines or security

Running old versions of a framework or application server

Lack of active developer knowledge

Unused features



When do you have a problem?
In the code

Lots of TODO and FIXME style comments
Code that can't be refactored
Code is too sloppy to make sense of
Poor variable naming
Files over 500 lines of code, functions over 200 lines
CFCs / classes with over 50 functions
Objects not well encapsulated
No objects / CFCs whatsoever
No intelligible structure
No formal tests, no automated testing
No automated build process
No software releases for 6 months
OOP done wrong





When are you in over your head?

Deep contempt for the system admitted by developers

All knowledgeable developers have disavowed and moved 
to remote locations

 
Frameworks or engines 10+ years old

No software releases in 5 years
 

Bug fixes take months
 

Lots of "Sorry", "OMG", "WTF" and "$%#&*!!" comments
 

Analysis revealing pure spaghetti code





Declaring bankruptcy



Declaring bankruptcy

Rewrite. Throw it all away and start over

Consider losing an hour's worth of work

Consider a year or a decade's worth

You may create new problems, new kinds of bugs, and 
features will be lost

Scary!



Declaring bankruptcy



Declaring bankruptcy

You can write better software in less time, now that you 
know what the system does and how it works

Do it right this time
Best practices
Refactorable code
Go OO
Build for testability



A personal story



Avoiding technical debt



How do you avoid technical debt?

Two perspectives

Micro, Easiest win: Make your code readable!
Indentation
Commenting
Naming

Macro
Architecture
Planning
Loose Coupling



Separate layers, keep them that way

Javascript in HTML

HTML in Javascript

CSS in Javascript

CSS in HTML

Javascript in CSS

Model-View-Controller



Write less
Photo by Tom Magliery, flickr.com/mag3737



Features Have Cost

Development time
obvious

Deployment
always longer than you think

Maintenance
more features means more to maintain
more bloat

Load cost
downloading time, bandwidth, CPU & memory usage

User confusion
Training 
Potential to introduce bugs



Test around
Image thanks to geekandpoke.typepad.com



Increase knowledgeable staff



Refactoring as a way of life



Junk stuff



Aggressive code management



Document by automation



Make debt visible
Photo by James Jordan, flickr.com/jamesjordan



Conclusion

The problems with software quality can be overcome, but it 
is a long, hard road

It's your job to write good software

Secure programming is good programming

Take calculated technical debt risks

It can take years to find the right approach

Watch for the warning signs

Make your code readable



Thanks

Bob, Marc & Emily.

You.

Nathan Strutz
strutz@gmail.com
@nathanstrutz
facebook, flickr, etc., etc.
www.dopefly.com

http://www.dopefly.com

